ASU professor awarded Chan Zuckerberg Initiative grant to support software essential to biomedicine


Portrait of ASU Associate Professor Oliver Beckstein

Oliver Beckstein, associate professor in ASU’s Department of Physics, was recently recognized by the Chan Zuckerberg Initiative with an Essential Open Source Software for Science (EOSS) grant to support MDAnalysis — an open-source software used by thousands of scientists for the analysis and manipulation of molecular simulations.

|

MDAnalysis — an open-source software used by thousands of scientists for the analysis and manipulation of molecular simulations — was recently recognized by the Chan Zuckerberg Initiative with an Essential Open Source Software for Science (EOSS) grant for the significant contribution it has on the field of biomedicine. 

The $374,087 grant will provide funding to improve and maintain the MDAnalysis software over the next two years. The team behind MDAnalysis is led by Oliver Beckstein, associate professor in Arizona State University’s Department of Physics.

The grant is part of the fourth cycle of the EOSS program, with a total of $11.1 million in funding for 35 new grants to support maintenance, growth, development and community engagement for tools that are widely used in biomedical imaging, genomics, cell biology, bioinformatics and other fields. In addition, the Chan Zuckerberg Initiative also awarded $4.9 million to 14 proposals led by previously funded EOSS grantees for initiatives dedicated to advancing diversity and inclusion in their contributor communities.

With more than 10,000 downloads a month, MDAnalysis has grown exponentially since it was first developed 13 years ago.

“It started as a small project of a graduate student and over the years attracted developers from all over the world and has become one of the most used packages of its kind for the analysis of molecular simulations, especially in the biosciences, but also in materials sciences, and it's also used in the pharma industry,” Beckstein said. “However, over all this time, the developers were never really paid to work on this software — it's all been volunteer work.”

Over the years the software has been maintained by graduate students and postdoctoral researchers, with assistance from research software engineers and assistant professors. Now, MDAnalysis will have the resources to support a number of developers so that they can focus on the software and work on improving it in a number of ways.

"We are incredibly proud of Dr. Beckstein for receiving the Chan Zuckerberg Initiative grant,” said Patricia Rankin, chair of the Department of Physics in The College of Liberal Arts and Sciences. "The Beckstein Lab's work in biophysics of membrane protein and their work on open-source software for the analysis of biomolecular simulations continues to demonstrate innovation within the Department of Physics. These awards will allow Dr. Beckstein and his team to continue their work, and we cannot wait to see the innovative work they produce next."

Beckstein shared more about the software and how the grant will propel this work forward.

Question: How would you describe MDAnalysis?

Answer: Computer simulations at the molecular scale have become a very important tool in the molecular sciences, namely understanding the function of biological systems from individual proteins to the interactions between cells and viruses, and the development of new materials. These simulations run on the biggest supercomputers in the world and produce huge amounts of data. MDAnalysis is a software package that enables researchers to efficiently and easily work with these data and analyze them. Novices and experts can use MDAnalysis because it provides both ready-made tools for common tasks but also fully documented programmatic access to all the data structures and algorithms that one needs to develop completely new solutions.

Q: What goals do you hope to achieve with the support of the Chan Zuckerberg Initiative grant? 

A: We want to speed up some of the core of our code so that it works faster, even for very big simulation systems with tens of millions of atoms. Our users always desire higher performance. But there's generally no funding to be had for such important work because most granting agencies prize novelty over what is often seen as "incremental" work, even though it has an enormous impact when thousands of researchers can get their results in a fraction of the time. The grant allows us to do something that we could normally not do. Another common problem in the molecular computational sciences is that everybody writes code and all research relies on this code, but not enough researchers make their code available. This leads to widely recognized problems: Research is difficult or impossible to reproduce, and effort is wasted due to code duplication when other researchers need to solve similar problems. Although MDAnalysis comes with a growing number of essential analysis tools that everybody can use and modify, these tools cannot cover all the new and creative use cases that scientists come up with. Therefore, we will make it easier for other researchers to share and publicize their code in the form of "code packages" named “MDAnalysis-Kits.” The grant will allow us to build the tools and documentation so researchers can turn their research code into a high-quality professional software package based on MDAnalysis. We hope that researchers will welcome the opportunity to make their work available to the large MDAnalysis user community.

Q: When did this project come about, and what interests you most about this work?

A: MDAnalysis was started by Naveen Michaud-Agrawal in 2006, then a graduate student at Johns Hopkins University. Another graduate student, Elizabeth Denning and I (then a postdoc at Johns Hopkins) used it and contributed code. We decided to open-source MDAnalysis in January 2008. Naveen eventually left academia, but Elizabeth and I continued work on MDAnalysis. Over the years, both users and contributors grew. By now, MDAnalysis is cited more than 1,700 times in the scientific literature, we have had more than 130 individuals contributing code so far and we now have a core developer team of about nine people who collectively steer the project, run workshops or write proposals together. Obviously, we use MDAnalysis everywhere in our own research, so it’s great to have a good scientific multipurpose tool at hand that allows us to implement our own new ideas. Overall, I am most happy about the fact that MDAnalysis is not just a useful piece of software for so many but that MDAnalysis has become its own thriving community that is known to be very welcoming and inclusive. 

Q: Who will be a part of your team, and how long do you anticipate working on this project? 

A: The team leading the work on the grant are Irfan Alibay, a postdoc at the University of Oxford in the U.K.; Lily Wang, a PhD student from the Australian National University in Canberra; Fiona Naughton, a postdoctoral researcher at the University of California, San Francisco; and Richard Gowers, who works as a lead developer for a cheminformatics company in the U.K. We will also hire a postdoctoral student here at ASU. The grant runs for two years, but even after then I foresee that I will continue to be involved in MDAnalysis.

More Science and technology

 

Photo of the ISPMHA group at ASU with Olivia Davis in the center

ASU postdoctoral researcher leads initiative to support graduate student mental health

Olivia Davis had firsthand experience with anxiety and OCD before she entered grad school. Then, during the pandemic and as a…

Silhouettes of an adult and a child facing each other.

ASU graduate student researching interplay between family dynamics, ADHD

The symptoms of attention deficit hyperactivity disorder (ADHD) — which include daydreaming, making careless mistakes or taking…

Portrait of Shaopeng Wang.

Will this antibiotic work? ASU scientists develop rapid bacterial tests

Bacteria multiply at an astonishing rate, sometimes doubling in number in under four minutes. Imagine a doctor faced with a…