The invention of the world’s first white laser, which could revolutionize communications, lighting and displays, is being recognized as one of the top 100 breakthroughs of the year by Popular Science magazine.
Arizona State University electrical engineering professor Cun-Zheng Ning worked on the problem for 10 years until he and his team of graduate students cracked it.
The white laser will eventually produce computer and TV displays with 70 percent more colors than current technology.
(ASU brings comic book technology to life.)
Laser TVs exist now, but they are bulky, heavy and extremely expensive. And, without the white laser, they haven’t reached their full potential.
Ning saw the first laser TV eight years ago in Japan.
“When you see a laser TV, you want to throw away the best other TVs immediately,” said NingThe School of Electrical, Computer and Energy Engineering is in the Ira A. Fulton Schools of Engineering. Ning is also graduate faculty in the Department of Physics in the College of Liberal Arts and Sciences, and in Material Science and Engineering in the Ira A. Fulton Schools of Engineering., a professor in the School of Electrical, Computer and Energy Engineering. “There’s just no comparison. It can cover much wider color ranges. … You get many, many more colors.”
(ASU's Library has the droids you are looking for.)
But don’t camp out at Best Buy just yet. It will take some time for the technology to advance to the consumer level, Ning said.
“It’s basic research at this point,” he said. “The lasers are still quite big, and the projection is not like an LCD TV we have at home. … We cannot produce multicolor white lasers that efficiently, so that we can put in our TV pixels.”
(Read more stories about discoveries at ASU.)
The invention is the product of nanophotonics, the study of light on the nanometer scale (one-billionth of a meter) and how nanometer-size objects interact with light. It combines optics, optical engineering, electrical engineering and nanotechnology.
“Nanophotonics is a pretty new field of research,” Ning said. “What we try to do is see if we can make nanophotonic devices that are very difficult to make. … With the white laser, we take advantage of nano-scaled materials.”
The semiconductor that produces the white laser is formed into three segments that generate red, green and blue lasers that combine to create a pure white light. Growing the semiconductor on a nanoscale was the key to cracking the problem.
“Imagine if you can use lasers as future lighting,” Ning said. “Using white lasers for lighting and LiFi ... the concept of LiFi is pretty new. It’s more active in Europe than the U.S.”
The LiFi concept is simple: Whatever you use for lighting will also transmit data, the Internet and everything else you get on a phone or tablet. You will get any information you want, instantly, no matter how big. The technology is being developed, according to Ning.
“It’s much faster than the Wi-Fi we have now,” he said. “And it’s much more secure; you just shut your door and anyone outside can’t get your signal. And it’s much faster; right now typically we get tens of megabits. With LED-based LiFi, you can get easily hundreds of megabits. Lasers are a hundred times faster than LEDs. That’s been demonstrated.”
It’s impossible to say when consumers will have lighting, displays and LiFi in their hands. The technology is so new Apple, Intel, and Motorola Mobility all refused to comment on it. Apple had a patent for a laser TV but abandoned development of it last year. The Wall Street Journal reported the picture was sub-par and it used an insane amount of power.
“Even on the research level we have a lot of work to do,” Ning said. Powering the laser with a battery will be the next biggest hurdle. (Currently it’s powered by another laser.)
Though there is still research to be done, the breakthrough discovery is being recognized for its significance by Popular Science in the December issue hitting stands Nov. 18.
“When I was back in China I read some (issues),” Ning said. “It’s a pretty prestigious magazine, so I’m happy.”
Each year, Popular Science editors review thousands of products in search of the top 100 tech innovations of the year — breakthrough products and technologies that represent a significant leap in their categories. The winners, the Best of What's New, are awarded inclusion in the much-anticipated December issue of the magazine.
“The Best of What’s New awards honor the innovations that surprise and amaze us — those that challenge our view of what’s possible in the future,” said editor-in-chief Cliff Ransom. “The award is Popular Science’s top prize, and the 100 winners — chosen from among thousands of nominees — are each a revolution in their respective fields.”
Best of What’s New awards are presented in 12 categories: automotive, aviation, computing, engineering, gadgets, green, entertainment, security, software, home, health and recreation.
Ning joined Arizona State University in 2006 as a full professor of electrical engineering from the NASA Center of Nanotechnology at NASA’s Ames Research Center, and University Affiliated Research Center of University of California, where he was a senior scientist, group leader in nanophotonics, and task manager in nanotechnology. He is also adjunct or guest professor of several universities in China. Ning has published more than 160 papers and given more than 120 keynote-type talks.
More Science and technology
From food crops to cancer clinics: Lessons in extermination resistance
Just as crop-devouring insects evolve to resist pesticides, cancer cells can increase their lethality by developing resistance to treatment. In fact, most deaths from cancer are caused by the…
ASU professor wins NIH Director’s New Innovator Award for research linking gene function to brain structure
Life experiences alter us in many ways, including how we act and our mental and physical health. What we go through can even change how our genes work, how the instructions coded into our DNA are…
ASU postdoctoral researcher leads initiative to support graduate student mental health
Olivia Davis had firsthand experience with anxiety and OCD before she entered grad school. Then, during the pandemic and as a result of the growing pressures of the graduate school environment, she…