In a significant stride for medical research, Hao Yan, a professor in Arizona State University’s School of Molecular Sciences and the Biodesign Center for Molecular Design and Biomimetics, has been awarded a $1.25 million grant from the National Institutes of Health (NIH). The grant, provided by the National Institute of General Medical Sciences (NIGMS), will fund Yan’s innovative research into programmable, targeted therapeutics.
Targeted protein degradation (TPD) is a new approach in drug development that focuses on breaking down disease-causing proteins inside cells. Traditional drugs usually work by blocking the activity of specific proteins. However, about 85% of proteins in cells are considered "undruggable" with these traditional methods because they can't be effectively targeted by small-molecule drugs.
TPD therapies take a different approach by using the cell's natural system for breaking down proteins to completely remove these problematic proteins. This method is especially useful for targeting proteins that are hard to inhibit directly. One type of TPD therapy, called proteolysis-targeting chimeras (PROTACs), uses the cell's ubiquitin-proteasome system — which is like the cell's trash disposal unit — to selectively degrade these tough-to-target proteins. While PROTACs have shown promise and some are already being tested in clinical trials, there are still significant challenges and opportunities for further development in this field.
Yan’s project addresses unmet needs in targeted protein degradation therapeutics and develops a series of programmable and conditional PROTACs enabled by nucleic acid nanotechnology.
“We are excited to receive this award from NIGMS to support our programmable and conditional PROTAC platforms,” Yan said, “and we believe we could utilize the high programmability of DNA nanotechnology to address some of the unmet yet important challenges in this field.”
To improve current methods, developing an effective drug delivery system that can activate the breakdown of target proteins only under certain conditions is crucial. Nucleic acid-based techniques, which have already shown success in medicine with drugs like antisense oligonucleotides (ASOs), offer great potential for advancing targeted protein degradation.
By using the natural programmability of DNA, researchers like Yan aim to create a precise way to deliver these protein-degrading therapies into cells and activate them only when needed.
More University news
ASU summer program honored with 2025 Award for Mathematics Programs that Make a Difference
The Joaquin Bustoz Math-Science Honors Program (JBMSHP) at Arizona State University has been honored with the 2025 Award for Mathematics Programs that Make a Difference from the American Mathematical…
ASU student earns prestigious Schwarzman Scholarship to study in China
The day that Schwarzman Scholarship candidates began getting notified that they had been chosen for the prized scholarship, Arizona State University student Jordan Harb kept an eye on the group chat…
New facilities focus on enhancing university experience
Arizona State University continues to meet the growing demand for academic and housing facilities on campus as part of its annual construction scope of more than 150 capital projects — a nearly $400…