Engendering equality in research


photo of three researchers with the woman cut out of the photo

Her breathing is shallow and sporadic, her stomach is doing somersaults and her jaw is locked. She is having a heart attack.

But according to medical standards, she isn’t.

The doctor says because there is no chest pain or pressure, the patient is not presenting typical symptoms for a heart attack. She is sent home with a less life-threatening diagnosis.

The doctor was right about one thing: The patient wasn’t typical. She was a woman.

Despite making up half the population, women aren’t considered “typical” subjects in many facets of research. Many products and services simply aren’t tested on women. Women are left out of medical research and genetic studies. And women are underrepresented among the people conducting research, as well.

As we celebrate Women’s History Month this March, researchers across Arizona State University talk about how the systems in and around scientific research facilitate the underrepresentation of women — and how they are working to change things.

XX marks the spot

In 2013, less than a third of studies analyzing the genome included the X chromosome, one of the two sex chromosomes. Despite policies encouraging researchers to include sex as a biological variable, these numbers have not increased in the past seven years, according to data from the National Institutes of Health.

The reasons behind these stagnant statistics are technical, historical and personal, according to Melissa Wilson, an assistant professor in ASU’s School of Life Sciences.

“In computational sciences, we view ourselves as being quantitative and therefore above petty distinctions. But the whole history of biomedical research suggests that we haven’t been,” Wilson said.

Her lab investigates sex chromosome evolution, sex-biased research and comparative genomics. By incorporating the X and Y chromosomes in studies, the lab explores sex differences in health and disease.

Melissa Wilson

Melissa Wilson, an assistant professor in the School for Life Sciences, investigates sex chromosome evolution, sex-biased research and comparative genomics. Photo by Andy DeLisle

Over the past 150 million years, the X and Y chromosomes have evolved to be very different. The Y chromosome has lost 90% of the gene content it once shared with the X chromosome.

Many of the genes found on sex chromosomes interact with genes found throughout the genome. In spite of this, most studies of human and animal genomes exclude the X and Y chromosomes because they don’t follow the typical chromosome pattern.

“Ninety-five percent of the picture is not the whole picture,” Wilson said. “You can’t partition the X chromosome off into its own space, because it’s still interacting with other genes.”

Some researchers and scientists hesitate to include sex as a variable in research because pregnancy and the menstrual cycle contribute to variability. However, sex is the most prevalent variable in the human population.

“It seems really unfortunate that we are going to exclude half of the population. Even if you are understanding the research in one sex, you not understanding it in everyone,” Wilson said.

Diseases don’t strike men and women equally. Wilson’s lab recently published a paper looking at sex differences in liver cancer, which impacts men four times more than women.

“If you’re only studying males you are not able to figure out what it is about females that allows them to have lower incidences of liver cancer,” Wilson said. “We can look at what is wrong, but also things that are potentially protective in each sex.”

graphic of human chromosome pairs with sex chromosomes highlighted

Each human cell contains 23 pairs of chromosomes, for a total of 46 chromosomes. Twenty-two pairs of the chromosomes (in white) are the same in both male and females. The 23rd pair are the sex chromosomes, and can differ between the sexes. Females have two copies of the X chromosome, while males have one X and one Y chromosome. Some individuals do not follow these sex chromosome patterns, as a result of genetic alterations. Illustration by Charity Chong.

Many labs do not include sex differences in their research questions because they don’t have the infrastructure to do so. To combat this problem, Wilson is developing new methodologies to make it easier for people to incorporate sex chromosomes into their analyses.

“If it’s a struggle for people to include it, then they won’t,” she said. “But it really only takes one second to ask, ‘Does this sample have a Y chromosome or not?’ It is simply constructing a slightly different model with a bit of thought.”

Although Wilson encourages scientists to consider sex in their research, she also warns against reducing sex to a singular variable. Because sex is not a binary, it becomes problematic when used incorrectly.

“With all of the factors involved in sex, we move into a very high-dimensional space,” she said. “It won’t be enough to add male and female as categorical variables to your study. It can be a start, but it won’t be enough.”

Wilson also acknowledges the risk that focusing on sex differences will reinforce gender stereotypes and discrimination. She reminds scientists that the variability across humans does not translate to inferiority and superiority.

“It’s not a slippery slope unless you make it one,” she said. “To say something is different, does not mean to say that something is better or worse. We just want to know if these differences translate to disease risk and treatment variability. Socially you can acknowledge variation without having to take that extra step.”

Wilson affirms that the templates and methods for including sex as a variable in research will get stronger and more available in the future. Researchers who are not doing this type of analysis will not be excluding sex because they don’t know how to, but rather because they are actively choosing not to.

“People will have everything they need. They still may not have the will,” she said.

Growing a stronger STEM

The will to include sex differences in studies will likely increase as the number of women researchers increases. Unfortunately, society loses women at every step along the path of STEM careers.

Throughout elementary, middle and high school, girls actively participate in high-level math and science courses, displaying achievement on par with their male classmates. However, the vast majority of undergraduate degrees in engineering, computer science, physics and mathematics are earned by men.

Although women earn a growing number of science and engineering doctoral degrees, they still hold less than one-third of doctorates in math, statistics, computer sciences and engineering. In the workforce, women receive only a third of NIH research grants across industry and academia. Women also hold less than one-third of leadership positions in all academic STEM fields.

For Kiki Jenkins, attributing these statistics to women “falling through the cracks” is too passive in explaining the problems of the STEM research pipeline.

The pipeline is not just leaky — it is fundamentally broken. 

“This problem is systemic and it comes from all places,” said Jenkins, an associate professor in the School for the Future of Innovation in Society. “It’s not that there are holes that women fall through; there are barriers and obstacles that are thrown in our faces. If we try to dodge them, they chase us down and run us over.”

photo of Jenkins with mentee in her office

Lekelia (Kiki) Jenkins, an associate professor in the School for the Future of Innovation in Society, talks with her mentee, Gabby Lout, in her office. Photo by Andy DeLisle

The system that female researchers operate in is aggressively hostile to women, she said. Jenkins says her mother was told as a child, “Math isn’t for girls.” When her mother pursued a professional degree, she had a fear of math because of what she had been told over and over again.

“She excelled regardless,” Jenkins said. “But if we have a system telling young girls they aren’t capable of something, that’s hard to overcome.”

Women don’t just have to be good scientists to succeed in this system; they have to be “social linebackers and strategic minds,” according to Jenkins. “Those things are not relevant to how good of a scientist they are, but they need them to succeed in this system.”

Jenkins’ personal experiences have fueled her passion for being an advocate for young girls and people of color in science. At middle school science fairs, Jenkins would see girls and kids of color who were smart and had great ideas but didn’t know how to navigate spaces that were unfamiliar and unwelcoming to them.

“Because they didn’t know how to work the system, their brilliance got lost, and as a result that benefit to society got lost,” Jenkins said. “That’s just not fair and that’s not good for everyone.”

Alongside 124 other women, Jenkins serves as an IF/THEN Ambassador for the American Association for the Advancement of Science (AAAS). In this position, Jenkins empowers and inspires the next generation of female scientists through media programming and community advocacy projects.

“What AAAS is doing is giving us a larger platform to amplify what we’re already doing,” Jenkins said. “It is really amazing the amount of money, effort and grand thinking that AAAS is putting behind these initiatives.”

Jenkins encourages everyone, inside and outside of STEM fields, to act as allies to women in STEM.

“Stand up and leverage your power,” she urged. “Chances are you’re in a position to stand up and do things that a woman you’re allied with cannot. The system will not change until we use this untapped power.”

Instead of asking surface level questions like “How many women work here?” society can ask deeper questions like “How quickly are women being advanced?” and “Is there equality in resources and opportunities?” These questions can uncover more subtle forms of discrimination.

“It’s not that there are holes that women fall through; there are barriers and obstacles that are thrown in our faces. If we try to dodge them, they chase us down and run us over.” 

— Kiki Jenkins, associate professor in the School for the Future of Innovation in Society

For girls and women pursuing STEM degrees and careers, Jenkins encourages personal community building and thorough research about academic programs.

“One thing women can do to address these problems is build a strong support community,” she said. “Also talk to people in your program and people who have matriculated out of the system. Get the truthful insights about diversity and inclusion at an institution before you decide to grow your roots there.”

Designing (for) women

Medical research is not the only area where women are excluded from studies. The lack of women as participants in product testing and sex-biased thought in design has led to a world that’s ill-fitted for women — from extra-large smartphones in undersized pants pockets to chilly office temperatures. Even life-saving devices, like seatbelts and airbags, were initially designed without women in mind.

Erin Chiou, an assistant professor of human systems engineering at the Polytechnic School, is one of the experts asking why these systems were not designed with everyone in mind.

Chiou is an editor of a recently released book, “Advancing Diversity, Inclusion, and Social Justice Through Human Systems Engineering.” It discusses incorporating marginalized groups into population samples, designing for marginalized groups specifically, and the push for more women and minorities in STEM education.

Erin Chiou

Erin Chiou, an assistant professor of human systems engineering at the Polytechnic School, is an editor of a recently released book, “Advancing Diversity, Inclusion, and Social Justice Through Human Systems Engineering.

The book details the historical and systematic omission of certain demographics in development phases. Ultimately, this results in one compromised design for a wide variety of users.

Designing for sameness intensifies disparities that already exist in society. For example, barrier curbs along roads make it difficult for people who use wheelchairs to access places that the “average human” can.

In contrast, universal design considers all people — regardless of age, race, gender and ability — when designing buildings, products or environments.

“Curb cuts on sidewalks are meant for people in wheelchairs to be able to navigate safely and comfortably on sidewalks as pedestrians already do,” Chiou said. “This design also benefits older adults and parents with strollers.”

Designing with women in mind isn’t just the ethical thing to do. It also translates to more money for businesses. Women currently drive 70%-80% of consumer spending worldwide, according to Bloomberg.

Chapters in Chiou’s book examine how women-centered design is reaping significant economic and social benefits for system developers, investors and customers.

“I think the most important thing we can contribute as a field is to let other engineers know that designing for the average human is actually excluding a large majority of the population,” Chiou said. “Who exactly is an average human?”

Light at the end of the pipeline

Wilson, Jenkins and Chiou are part of a growing movement to make research more inclusive. At the federal level, the Office of Women’s Health Research at the National Institutes of Health brings together people in the scientific community to think about why and how sex should be included as a biological variable. Wilson, who is a member of the Women’s Health Research committee, is currently collaborating with other members on a paper about best practices in genetic research.

Change is happening on an institutional level, as well. In ASU’s new computational life sciences certificate program, for example, students must enroll in an ethics course to address problems like sex bias in genomics research.

“We are really proud that our students have discussed the responsible conduct of research and bioethics,” said Wilson. “I’m hoping this gives future scientists a framework to interpret their results and what kinds of questions to ask in the first place.”

“People will have everything they need. They still may not have the will.” 

— Melissa Wilson, assistant professor in the School of Life Sciences

In the marketplace, applying the values of universal design translates to an inclusive environment and better products that will appeal to more people.

“Including a diverse population in your research, or targeting a diverse population in your design, will actually have a greater impact on our world than designing for the average,” Chiou said.

Jenkins says she is seeing increased diversity in the STEM community.

“For the longest time, I was the only black woman in a room,” she said. “That’s changing. I see young black women as graduate students or postdocs more frequently.”

But, she adds, there is much more work to be done.

“Yes, there is change. No, it is not as fast as I’d like it. In positions of power and leadership things are not changing. Those people are largely male and largely white.”

Through her work as an AAAS IF/THEN Ambassador and community advocate at ASU, she is working with the next generation of scientists to change that, alongside colleagues across the university such as Wilson and Chiou.

“This is not a side-job, an extra, an add-on or outreach,” Jenkins said. “This is imperative, so we should value it more.”

Written by Maya Shrikant. Banner illustration by Patrick Cheung.

More Science and technology

 

Yuchao Li and Dimitri Bertsekas play chess.

Brilliant move: Mathematician’s latest gambit is new chess AI

Benjamin Franklin wrote a book about chess. Napoleon spent his post-Waterloo years in exile playing the game on St. Helena. John Wayne carried a set and played during downtime while filming “El…

Photo illustration of an astronaut floating in space with a blue planet on the horizon behind him

ASU team studying radiation-resistant stem cells that could protect astronauts in space

It’s 2038.A group of NASA astronauts headed for Mars on a six-month scientific mission carry with them personalized stem cell banks. The stem cells can be injected to help ward off the effects of…

Mother chimpanzee holds her baby while seated in a forest setting.

Largest genetic chimpanzee study unveils how they’ve adapted to multiple habitats and disease

Chimpanzees are humans' closest living relatives, sharing about 98% of our DNA. Because of this, scientists can learn more about human evolution by studying how chimpanzees adapt to different…